Heat kernel analysis on graphs
نویسنده
چکیده
In this thesis we aim to develop a framework for graph characterization by combining the methods from spectral graph theory and manifold learning theory. The algorithms are applied to graph clustering, graph matching and object recognition. Spectral graph theory has been widely applied in areas such as image recognition, image segmentation, motion tracking, image matching and etc. The heat kernel is an important component of spectral graph theory since it can be viewed as describing the flow of information across the edges of the graph with time. Our first contribution is to investigate how to extract useful and stable invariants from the graph heat kernel as a means of clustering graphs. The best set of invariants are the heat kernel trace, the zeta function and its derivative at the origin. We also study heat content invariants. The polynomial co-efficients can be computed from the Laplacian eigensystem. Graph clustering is performed by applying principal components analysis to vectors constructed from the invariants or simply based on the unitary features extracted from the graph heat kernel. We experiment with the algorithms on the COIL and Oxford-Caltech databases. We further investigate the heat kernel as a means of graph embedding. The second contribution of the thesis is the introduction of two graph embedding methods. The first of these uses the Euclidean distance between graph nodes. To do this we equate the spectral and parametric forms of the heat kernel to com-
منابع مشابه
A ug 2 00 6 Random walk on graphs with regular resistance and volume growth ∗
In this paper characterizations of graphs satisfying heat kernel estimates for a wide class of space-time scaling functions are given. The equivalence of the two-sided heat kernel estimate and the parabolic Harnack inequality is also shown via the equivalence of the upper (lower) heat kernel estimate to the parabolic mean value (and super mean value) inequality.
متن کاملContemporary Mathematics Heat Kernel Estimates and Law of the Iterated Logarithm for Symmetric Random Walks on Fractal Graphs
We study two-sided heat kernel estimates on a class of fractal graphs which arise from a subclass of nitely ramiied fractals. These fractal graphs do not have spatial symmetry in general, and we nd that there is a dependence on direction in the estimates. We will give a new form of expression for the heat kernel estimates using a family of functions which can be thought of as a \distance for ea...
متن کاملHeat kernels on manifolds, graphs and fractals
We consider heat kernels on different spaces such as Riemannian manifolds, graphs, and abstract metric measure spaces including fractals. The talk is an overview of the relationships between the heat kernel upper and lower bounds and the geometric properties of the underlying space. As an application some estimate of higher eigenvalues of the Dirichlet problem is considered.
متن کاملHeat Kernels on Metric Graphs and a Trace Formula
We study heat semigroups generated by self-adjoint Laplace operators on metric graphs characterized by the property that the local scattering matrices associated with each vertex of the graph are independent from the spectral parameter. For such operators we prove a representation for the heat kernel as a sum over all walks with given initial and terminal edges. Using this representation a trac...
متن کاملHeat kernel estimates on weighted graphs
We prove upper and lower heat kernel bounds for the Laplacian on weighted graphs which include the case that the weights have no strictly positive lower bound. Our estimates allow for a very explicit probabilistic interpretation and can be formulated in terms of a weighted metric. Interestingly, this metric is not equivalent to the intrinsic metric. The results Heat kernel estimates are a tool ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007